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Development of miracle medicines from sialic acids
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(Communicated by Satoshi ŌMURA, M.J.A.)

Abstract: Sialic acids are electronegatively charged C9-sugars and are considered to play
important roles in higher animals and some microorganisms. Denoting their significance,
understanding and exploiting the complexity of the sialic acids has been referred to as the “the
third language of life”. In essence, “sialic acid derivatives possess a harmonious shape and good
balance between two opposing hydrophilic and hydrophobic parts, meaning that they should
display various kinds of potentially unique and possibly conflicting physiological activities
(glycolipoids)”. Consequently, there are good omens that unprecedented ‘miracle’ medicines could
be developed from sialic acid derivatives. In this review, the first problem, the preparation of sialic
acids, is covered, the synthesis of sialic acid derivatives and confirmation of their structures
obviously being of critical significance. In addition we needed to confirm their precise
stereochemistry and a hydrolysis method has been developed for confirmation of the anomeric
position. Several of the compounds have already demonstrated interesting bioactivity.

Keywords: biological activities, DSC, glycosylation, KDN, neuraminic acids,
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1. Introduction

This review summarizes typical sialic acids
(1–5) not only for preparations of derivatives,
stereochemical determinations, but also physiological
activities. Working strategy of this research work is
“sialic acids derivatives having good shape of
molecule (GLYCOLIPOID1)) would elicit physiolog-
ical activity”.2),3)

Sialic acids are known important molecules for
the human life activities, and also for higher animals,
and some microorganisms.4),5) Professor Tamio
Yamakawa is a pioneer of sialic acids research in
Japan.6)

2. Preparation of sialic acids

2-1. N-Acetyl-D-neuraminic acid (1: Neu5-
Ac). Most important sialic acid, “N-acetyl-D-
neuraminic acid (5-acetamido-3,5-dideoxy-D-glycero-
O-D-galacto-2-nonulopyranosonic acid)” (1) was ob-
tained from edible bird’s (Collocalia sp.) nest in 5–
10% yields by hydrolysis with dil. sulfuric acid.7),8)

Edible bird’s nest was obtained from Chinese food
grocery. Structure of the nest mucin was described by
Wieruszeski9) and Strecker et al.,10) and for N-glycans
by Yagi et al.11)

Configuration of both crystals (fine needles and
prisms) of Neu5Ac were confirmed as the O-form, by
means of IR, CD, and CP-MASS NMR spectra.12),13)

On the other hand, Neu5Ac in an aqueous solution
exists in equilibrium of 5–8% of ,-anomer and 92–
95% of O-anomer. Further equilibrium studies of
Neu5Ac are summarized in Fig. 2.

Reaction of Neu5Ac (1) with alkyl halide gave
the corresponding N-acetyl-2-O-alkyl-3,5-dideoxy-D-
glycero-D-galacto-2-noneno-1,4-lactone [A, C]. On
the other hand, acylation of Neu5Ac (1) with usual
procedures gave 1,7-lactones14) [B], and also 2,7-
anhydroneuraminic acid (5)15) [D]. These phenomena
are strongly suggested the equilibrium of Neu5Ac (1)
summarized in Fig. 2.

2-2. N-Glycolyl-D-neuraminic acid (2:
Neu5Gc). Neu5Gc (2) is a sialic acid of some
mammals such as pig, equine, rat and some kinds of
dog. Also Neu5Gc is important about aging and some
diseases such as cancer.5),16),17)

Neu5Gc was prepared from Neu5Ac (1) as
shown Fig. 3 in 20% of overall yields.18) A convenient
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Fig. 1. Typical sialic acids.

Fig. 2. Equilibrium of Neu5Ac (1).
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active ester synthetic reagent N,N′-disuccinimidyl
carbonate (DSC)19)–21) was used for active ester
synthesis.

N,N′-Disuccinimidyl carbonate (10: DSC) is
prepared as the convenient reagent for active ester
and for peptide synthesis, from N-hydroxysuccin-
imide and trichloromethyl chloroformate or N-
(trimethylsilyl)diethylamine with phosgene.19)–21)

N,N′-Disuccinimidyl oxalate (DSO) is also useful for
the same purpose.22) DSC and DSO are used in the
world for peptide and lactam syntheses.22)–24)

2-3. 3-Deoxy-D-glycero-D-galacto-2-nonulo-
pyranosonic acid (3: KDN). KDN (3) was found
from unfertilized rainbow trout eggs by Inoue et al.25)

KDN was also obtained from fertilized eggs of chum
salmon.26) KDN (3) was synthesized starting from

Neu5Ac by thermal rearrangement of N-acetyl-N-
nitrosoneuraminic acid derivative followed by depro-
tection.27) Structure of methyl glycoside of KDN was
confirmed by X-ray analysis.27)

Condensation of oxalacetic acid with D-man-
nose, followed by decarboxylation with nickel chlo-
ride as a catalyst gave KDN (3) in 70% of yield.28)

Similar procedure was adopted to D-arabinose, 3-
deoxy-D-manno-2-octulosonic acid (14: KDO) was
obtained in 66% of yield.28)

KDN has hydroxyl group instead of acetamido
group at 5-position of Neu5Ac. As shown in Fig. 7,
methyl 3-deoxy-D-glycero-O-D-galacto-2-nonulopyra-
nosonate (15) was treated with Dowex-50(HD), in
methanol followed by acetic anhydride treatment to
yield four compounds. Pyranose-type (16a,b) and

Fig. 3. Synthesis of Neu5Gc (2).

Fig. 4. Synthesis of DSC (10).
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furanose-type (17a,b) compounds were obtained.
These structures were confirmed by NMR and X-ray
crystallography.29)

These experiments strongly suggest that equi-
librium of KDN is summarized as shown in Fig. 8.

2-4. 5-Acetamido-2,6-anhydro-2,3,5-tri-
deoxy-D-glycero-D-galacto-non-2-enoic acid (4;
Neu2en5Ac). Neu2en5Ac (4) is widely distributed
in nature, and have some biological activities.5)

Methyl 5-acetamido-3,5-dideoxy-D-glycero-D-galac-

to-2-nonulopyranosonate (18) was treated with
acetic anhydride-sulfuric acid at room temperature
to yield Neu2en4,5,7,8,9Ac5 (19), and then hydro-
lyzed to Neu2en5Ac (4) as prisms. Structure of
Neu2en5Ac was confirmed by X-ray analysis.30) The
same reaction proceeds at 80 °C, epi-derivative (20)
was mainly obtained accompanying small amount of
by-products (21, 22).

Hydrogenation of methyl 4,7,8,9-tetra-O-acetyl-
N-acetyl-2,3-dehydro-2-deoxyneuraminate (19) with

Fig. 5. Synthesis of KDN from Neu5Ac by thermal rearrangement.

Fig. 6. Synthesis of KDN and KDO.
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platinum oxide under the hydrogen atmosphere
yielded 4-deoxy derivative (23), and the same
compound also obtained from 4-epi-derivative (20).
Further hydrogenation of these compounds (19, 20,
23) gave methyl 7,8,9-triacetyl-N-acetyl-2,4-dideoxy-

neuraminate (25), further treatment of this com-
pound with 1mol/L sodium hydroxide afforded N-
acetyl-2,4-dideoxyneuraminic acid (27).30)

Hydrogenation of 19 and 20 with Pd-C under
the hydrogen atmosphere yielded corresponding

Fig. 7. Methylation of methyl 3-deoxy-D-glycero-O-D-galacto-2-nonulopyranosonate (15).

Fig. 8. Equilibrium of KDN (3).
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saturated compounds 24 and 26, respectively, as
shown in Fig. 10.31)

2-5. 2,7-Anhydro-neuraminic acid.
2-5-a. 2,7-Anhydro-N-acetylneuraminic acid (5).

2,7-Anhydro-N-acetylneuraminic acid (5) was iso-
lated by Suzuki et al.32) from wet type cerumen. Li
et al.33) reported that leeches contain novel sialidases
releasing 2,7-anhydroNeu5Ac quantitatively from
,-sialosyl-glycoconjugate.

Preparation of 5 from Neu5Ac (1) via methyl 5-
acetamido-3,5-dideoxy-8,9-O-isopropylidene-D-glycero-
D-galacto-2-nonulopyranosonate34),35) using 1,1-bis[6-
(trifluoro-methyl)benzotriazolyl] carbonate (BTBC)36),37)

as summarized in Fig. 11.
On the other hands, when S-methyl glycoside

(34)38) of Neu5Ac was used, 2,7-anhydro derivative
(5) was obtained in 50% of overall yield.39)

2-5-b. 2,7-Anhydro-N-glycolylneuraminic acid (40).
2,7-Anhydro-N-glycolylneuraminic acid (40; 2,7-
anhydro-N-glycolyl-3,5-dideoxy-,-D-glycero-O-D-ga-

lacto-2-nonulopyranosonic acid) was prepared start-
ing from methyl 5-acetamido-3,5-dideoxy-2-thio-,-
D-glycero-D-galacto-2-nonulopyranosonate (34),38)

through hydrolysis, benzylation, and benzoylation
reaction to yield benzyl [methyl 5-N-(O-benzyl-
glycolyl)-3,5-dideoxy-2-thio-,-D-glycero-D-galacto-2-
nonulopyranosid]onate (38) as an intermediate.
Intramolecular glycosylation of 38 was performed
with dimethyl(methylthio)sulfonium triflate
(DMTST) to yield 4,9-di-O-benzoyl derivative (39).
After removal of benzyl and benzoyl group,
2,7-anhydro-N-glycolylneuraminic acid (40) was
obtained as shown in Fig. 12.39)

3. Preparation of sialic acids derivatives

3-1. Ester and lactone formation.
3-1-a. Esterification (1,4-lactone). Neu5Ac (1)

was treated in methanol under reflux with Dowex-50
(HD) to yield methyl (methyl 5-acetamido-3,5-di-
deoxy-D-glycero-O-D-galacto-nonulopyranosid)onate

A perspective view of Neu2en5Ac (4)

Fig. 9. Synthesis of Neu2en5Ac.
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(42).8) On the other hand, the reaction was
performed under room temperature to yield methyl
N-acetyl-O-D-neuraminate (41) in 86% of yield.8)

When diazomethane was used for formation of
methyl ester, compounds 43a and 1,4-lactone (44a)
were formed via intramolecular cyclizaion of
A!B!C. On the other hand, benzyl 5-acetamido-
3,5-dideoxy-O-D-glycero-D-galacto-2-nonulopyranoso-
nate (43b) was obtained from cesium salt of Neu5Ac
and benzyl bromide in good yield. Further treatment
of 43b with cesium carbonate and benzyl bromide,
or Neu5Ac (1) being treated with excess amount
of cesium carbonate and benzyl bromide, gave
5-acetamido-2-O-benzyl-3,5-dideoxy-O-D-glycero-D-
galacto-2-noneno-1,4-lactone (44b).15)

Methylation of Neu5Ac (1) with methyl iodide
yielded 5-acetamido-2-O-methyl-3,5-dideoxy-O-D-glyc-
ero-D-galacto-2-noneno-1,4-lactone (44a) in fairly good
yield. Further, acetylation of 44a afforded 5-acet-
amido-6,7,8,9-tetra-O-acetyl-2-O-methyl-3,5-dideoxy-
O-D-glycero-D-galacto-2-noneno-1,4-lactone (45).14)

Structure of 1,4-lactone was confirmed by means
of X-ray analysis of 45 as shown in Fig. 14.

3-1-b. Acylation (1,4-lactone; 1,7-lactone). Ace-
tylation of Neu5Ac (1) with acetic anhydride at room
temperature, there was obtained 2,4,7,8,9-penta-O-
acetyl-N-acetylneuraminic acid (48) in 90% yield.
Purification of the reaction residue, there was

obtained a small amount (6%) of 5-acetamido-
2,4,8,9-tetra-O-acetyl-3,5-dideoxy-O-D-glycero-D-ga-
lacto-2-nonulopyranosono-1,7-lactone (49).40)

Structure of 1,7-lactone (49) was confirmed by
means of X-ray analysis as shown in Fig. 16.40)

Benzoylation of Neu5Ac with benzoyl chloride
gave per-O-benzoylated 1,7-lactone derivative (50)
together with small amount of per-O-benzoylated
1,4-lactone (51) and 2,8,9-tri-O-benzoylated 1,7-
lactone. The 4 and 7 positions are low reactivity
owing to the steric hindrance.

Furthermore, benzoylation with benzoic anhy-
dride gave 2-O-benzoylated 1,7-lactone in about 50%
yield, while the use of excess amount of reagent, 2,9-
di-O-benzoylated 1,7-lactone and 2-O-benzoylated
1,7-lactone were formed as shown in Fig. 17.

When acylation was performed with pivaloyl
chloride, main product is 5-acetamido-2,4,8,9-
tetra-O-pivaroyl-3,5-dideoxy-D-glycero-O-D-galacto-
nonulopyranosono-1,7-lactone (52) and small
amount of 2,4,9-tri-O-substituted and 2,8,9-tri-
O-substituted compounds were obtained.

Ethoxycarbonylation of Neu5Ac with ethyl
chloroformate gave 5-acetamido-2,8,9-tri-O-ethoxy-
carbonyl-3,5-dideoxy-D-glycero-O-D-galacto-2-nonulo-
pyranosono-1,7-lactone (53) and 5-acetamido-
2,7,8,9-tetra-O-ethoxycarbonyl-3,5-dideoxy-D-glycero-
O-D-galacto-2-nonulopyranosono-1,4-lactone (54).

Fig. 10. Reaction of 2,3-dehydro-2-deoxyneuraminic acid (4).
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Treatment of 54 with methanol converted to
methyl 5-acetamido-2,7,8,9-tetra-O-ethoxycarbonyl-
3,5-dideoxy-D-glycero-O-D-galacto-2-nonulopyranoso-
nate (55).15)

Structures of these products were confirmed by
means of NMR spectra.

3-1-c. Acylation of 4-position. Treatment of
Neu5Ac1Bn (43b) with 2,2-dimethoxypropane and
a catalytic amount of p-toluenesulfonic acid gave
benzyl 5-acetamido-8,9-O-isopropylidene-D-glycero-
O-D-galacto-2-nonulopyranosonate in good yield.
Further acetylation of this compound gave

A perspective view of methyl N-acetyl-2,7-anhydroneuraminate (5-Me) 

Fig. 11. Synthesis of 2,7-anhydro-N-acetylneuraminic acid (5).
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benzyl 5-acetamido-4-O-acetyl-8,9-O-isopropylidene-
D-glycero-O-D-galacto-2-nonulopyranosonate (56).
Removal of the O-isopropylidene group with acetic
acid treatment and then hydrogenolyzed to yield
5-acetamido-4-O-acetyl-3,5-dideoxy-D-glycero-O-D-ga-
lacto-2-nonulopyranosonic acid (57).41)

3-1-d. Acylation of 7-position. Treatment of
methyl N-acetylneuraminate (41) with 2,2-dime-
thoxypropane and then with tert-butyldimethylsilyl
chloride gave methyl 5-acetamido-3,5-dideoxy-8,9-
O-isopropylidene-4-O-tert-butyldimethylsilyl-D-glyc-
ero-O-D-galacto-2-nonulopyranosonate (58).

Further acetylation of 58 afforded only 2-
acetylated compound (59). Thus, the hydroxyl group
of 7-position is less reactive than that of 2-position.

Treatment of ,-methyl glycoside of methyl N-
acetylneuraminate (60) with 2,2-dimethoxypropane
gave 8,9-O-isopropylidene derivative (61), further
treatment with tert-butyldimethylsilyl chloride ob-
tained 4-O-tert-butyldimethylsilyl derivative (62).
Acetylation of 62, and then was deprotected with
acetic acid to give methyl (methyl 5-acetamido-
7-O-acetyl-3,5-dideoxy-D-glycero-,-D-galacto-2-non-
ulopyranosid)onate (64).42)

3-1-e. Acylation of 9-position. Various 9-O-
acyl derivatives of Neu5Ac were synthesized by
use of ortho esters such as trimethyl orthoformate,
trimethyl orthoacetate, trimethyl orthobutyrate,
trimethyl orthovalerate, and trimethyl orthoben-
zoate to give the corresponding 9-O-acylated deriv-
atives in fairly good yields. Structures of these
compounds (65 a–e) were confirmed by NMR
spectra. Regioselective acylation clearly suggested

that the formation of the internal ortho esters as
shown in Fig. 20.41)

3-2. Glycosylation of Neu5Ac.
3-2-a. Glycosyl donor of Neu5Ac. Neu5Ac (1)

was refluxed in methanol under the presence of
Dowex-50 (HD), O-methyl glycoside (42) was ob-
tained. On the other hand, under the room temper-
ature condition, methyl N-acetyl-O-D-neuraminate
(41) was obtained in 86% of yield.8) Further, direct
treatment with acetyl chloride, methyl 4,7,8,9-tetra-
O-acetyl-N-acetyl-2-chloro-2-deoxy-O-D-neuraminate
(66) was obtained in 95% of yield as crystals. This
compound is the most important intermediate as
glycosyl donor. Methanol treatment of the chloride
(66) gave ,-glycoside (67), further deacetylation
with potasium methoxide to yield methyl (methyl 5-
acetamido-3,5-dideoxy-D-glycero-,-D-galacto-nonu-
lopyranosid)onate (68).8)

Reduction of 68 with sodium borohydride
yielded methyl 5-acetamido-3,5-dideoxy-D-glycero-
,-D-galacto-nonulopyranoside (69). On the other
hand, methyl 5-acetamido-3,5-dideoxy-D-glycero-O-
D-galacto-nonulopyranoside (70) was prepared from
the O-anomer (42).8)

3-2-b. S-Glycosyl donor of Neu5Ac. Neu5Ac S-
glycosyl donor was prepared by use of S,S ′-bis(1-phen-
yl-1H-tetrazol-5-yl) dithiocarbonate (30). The reagent
is prepared conveniently from 1-phenyl-5-thioxo-4,5-
dihydro-1H-tetrazole and trichloromethyl chlorofor-
mate in 77% of yield.37) Structure of this reagent was
confirmed by means of X-ray analysis (Fig. 23).

Reaction of the reagent (30) with allylic
alcohols gave 1-phenyltetrazole-5-thio allylic sulfides,

Fig. 12. Synthesis of 2,7-anhydro-N-glycolylneuraminic acid (40).
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and further treatment with Grignard reagents
yielded carbon–carbon bond formation product
[A].43),44)

Reaction of the reagent (30) with amines gave
isothiocyanates [B], and with carboxylic acids yielded
amides [C], esters [D], carbonyl compounds [E] and
many kinds of heterocycles [F].44),45)

Reaction of BDTC (30) with 2,3,4,6-tetra-O-
benzyl-,-D-glucopyranose gave S-1-(1′-phenyl-1H-
tetrazolyl) 2,3,4,6-tetra-O-benzyl-O-D-glucopyranose
(71) by an one-step reaction. Glycosylation of
alcohols (methanol, cyclohexanol, cholesterol, and
sugars) with 71 gave glycosides (72) in good yields
(Table 1).45),46)

Fig. 14. A perspective view of 5-acetamido-6,7,8,9-tetra-O-ace-
tyl-2-O-methyl-3,5-dideoxy-O-D-glycero-D-galacto-2-noneno-1,4-
lactone (45).

Fig. 13. Esterification of Neu5Ac (1).
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Sialic acid S-glycosyl donor (73) was prepared
efficiently in one step reaction with BDTC (30) and
methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-di-
deoxy-D-glycero-O-D-galacto-2-nonulopyranosonate to
yield stable S-glycosyl donor, methyl [1-phenyl-1H-
tetrazol-5-yl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-
dideoxy-2-thio-D-glycero-,- and -O-D-galacto-2-nonu-
lopyranosid]onate (73).34),46)

Reaction time of the S-glycosyl donor (73) with
methanol in nitromethane under the presence of Hg-
triflate is shorter than dichloromethane solvent. It
may be considered that the reaction proceeds owing

to the solvent effect, and using silver or mercury
triflate occurs via an SN2-like mechanism.47)

Further glycosylation of 73 with alcohols gave
glycoside, such as methyl, sialosyl-(2!6′)-lactosyl,
and cholesteryl derivatives (74).48)

3-2-c. Disaccharide nucleosides. Glycosylation of
Neu5Ac (1) by Koenigs–Knorr reaction using key
intermediate (66) was performed. When an insoluble
promoter was used ,-glycoside was formed, instead,
when soluble promoter was used, gave equal amounts
of ,- and O-glycosides.8)

Koenigs–Knorr reaction of 2′,3′-O-isopropylide-
neuridine with the chloride (66) in the presence of
mercuric cyanide as a catalyst gave O-[methyl (5-
acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glyc-
ero-D-galacto-2-nonulopyranosyl)onate]-(2!5′)-2′,3′-
O-isopropylideneuridine (75a: R F H) and its 5-
fluorouridine derivatives (75b: R F F) and their
O-anomers (76a: R F H and 76b: R F F). Both
compounds were treated with 1mol/L sodium
hydroxide to yield corresponding disaccharide nu-
cleosides (77a: R F H, 77b: R F F and 78a: R F H,
78b: R F F).8)

When silver perchlorate and silver carbonate
were used as the catalyst, O-[methyl (5-acetamido-
4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-,-D-ga-
lacto-2-nonulopyranosyl)onate]-(2!N3)-2′,3′-O-iso-
propylideneuridine (79) was obtained in stead of the
O-anomer. In each case, Neu2en4,5,7,8,9Ac51Me (19)
was formed.

Koenigs–Knorr reaction of 2′,3′-di-O-acetylino-
sine with the chloride (66) as a glycosyl donor gave

Fig. 15. Acetylation of Neu5Ac (1).

Fig. 16. A perspective view of 5-acetamido-2,4,8,9-tetra-O-ace-
tyl-3,5-dideoxy-O-D-glycero-D-galacto-2-nonulopyranosono-1,7-
lactone (49).
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methyl [N-acetyl-4′′,7′′,8′′,9′′-tetra-O-acetyl(2′,3′-di-
O-acetylinosin-5′-yl)-,- and -O-D-neuraminosid]onate
(80a: ,-anomer; 80b: O-anomer). Similar reaction
was adopted to 2′,3′-di-O-acetyl-N-benzoylcytidin as
glycosyl acceptor, also gave methyl [N-acetyl-
4′′,7′′,8′′,9′′-tetra-O-acetyl(2′,3′-di-O-acetyl-N-benzo-
ylcytidin-5′-yl)-,- and -O-D-neuraminosid]onate
(82a: ,-anomer; 82b: O-anomer) were obtained. In
each case, methyl N-acetyl-4,7,8,9-tetra-O-acetyl-2,3-
dehydro-2-deoxyneuraminate (19) was formed.48)

Further saponification of these compounds
(80a,b and 82a,b) gave N-acetyl(inosin-5′-yl)-,-
and -O-D-neuraminosidoic acids (81a,b), N-acetyl-
(cytidin-5′-yl)-,- and -O-D-neuraminosidoic acids
(83a,b).

3-2-d. N-Glycoside nucleosides. N-Glycosyl
derivatives of Neu5Ac (1) were prepared from
methyl 2,4,7,8,9-penta-O-acetyl-N-acetyl-O-D-neura-

minate (84) with trimethylsilylpyrimidine or 5-
fluoro-trimethylsilylpyrimidine. There was obtained
a 1:1 ratio of anomeric mixture (85a,b or 86a,b). On
the other hand, the chloride (66) was used as a
starting material, only the O-anomers (85b; 86b)
were formed. In this case, methyl 4,7,8,9-tetra-
O-acetyl-N-acetyl-2,3-dehydro-2-deoxyneuraminate
(19) was separated.49)

3-2-e. Mucin analogs. Mucin is one of the
important substance in sialoglycoproteins. N-Acetyl-
glucosamine treated with acetyl chloride yielded
chloride (87), followed by treatment with Cbz-serine
to yield 88. Further treatment of this compound (88)
with triethylamine, trityl chloride, acetic anhydride,
and hydrobromide, successively gave 89, followed by
coupling with the chloride (66) to yield 90, and then
deacetylation afforded Neu5Ac,(2!6)GluNAcO1!
Ser (91).7)

Fig. 18. Acetylation of 4-position.

Fig. 17. Acylation of Neu5Ac (1).
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On the other hand, Neu5Ac,(2!6)Glu-
NAc,(1!)Ser (95) was synthesized from bromo-
derivative (92) as shown in Fig. 27.7)

3-2-f. Sialyllactose. Sialyl oligosaccharides from
human, bovine, and rat milk include ,(2!3)- and
,(2!6)-linked sialyllactose.5) ,(2!6)Sialyllactose
was synthesized from 1,6-anhydro-2,2′,3,3′,4′,6′-
hexa-O-acetyl-O-D-lactose (96) by removing the

acetyl group, followed by tritylation, and then
benzoylation to give O-(2,3,4-tri-O-benzyl-O-D-galac-
topranosyl)-(1!4)-1,6-anhydro-2,3-di-O-benzyl-O-D-
glucopyranose (97) and reaction with the chloride
(66) under the Koenigs–Knorr reaction condi-
tions.50)

There was obtained the anomeric mixture
of the product (100). With further treatment of

Fig. 20. Acylation of 9-position.

Fig. 19. Acetylation of 7-position.
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Fig. 21. Synthesis of glycosyl donor (66).

Fig. 22. Synthesis of S,S ′-bis(1-phenyl-1H-tetrazol-5-yl)dithiocarbonate (30) and its reactions.
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deprotection and separation, there was ob-
tained ,- and O-anomeric Neu5Ac(2!6) lactose
(101a,b).

O-(5-Acetamido-9-O-acetyl-3,5-dideoxy-D-glyc-
ero-,-D-galacto-2-nonulopyranosylonicacid)-(2!6)-O-
O-D-galactopyranosyl-(1!4)-D-glucopyranose (102)
and 9-O-butyroyl derivative (103) were prepared
from the sialyllactose (101a,b).

Fig. 24. Disaccharide nucleoside of Neu5Ac (No. 1).

A perspective view of BDTC (30)

Fig. 23. Synthesis of S-glycosyl donor.

Table 1.

Compound methanol cyclohexanol cholesterol sugar* sugar**

Yield (%) 87 95 95 48 71

*1-methyl-2,4,6-tri-O-benzyl-3-O-(2,3,4,6-tetra-O-benzyl-,- and
-O-D-glucopyranosyl)-,-D-glucopyranose.
**O-(2,3,4,6-tetra-O-benzyl-,- and -O-D-D-glucopyranosyl)-
(1!6)-O-(2,3,4-tri-O-benzyl-,-D-galactopyranosyl)-(1!4)-1,6-
anhydro-2,3-di-O-benzyl-,-D-glucopyranose.
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Fig. 26. N-Glycoside nucleoside.

Fig. 25. Disaccharide nucleoside of Neu5Ac (No. 2).
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When S-glycosyl donor (73) was used instead of
the chloride (66), ,- and O-anomeric mixture of 98
was obtained in 34–54% yields.

3-2-g. Sialylcholesterol. Cholesterol is one of the
most important molecule in the animal cell mem-
branes, and sialylated cholesterol could not be found
in the animal cells. Of our interest to prepare
glycolipoids, sialylcholesterol and GM3 analog are
synthesized.

Koenigs–Knorr-like reaction of the chloride (66)
and cholesterol under various conditions gave ,- and
O-anomers of methyl 5-acetamido-4,7,8,9-tetra-O-
acetyl-2-(5-cholesten-3O-yloxy)-3,5-dideoxy-D-glycero-
D-galacto-2-nonulopyranosonate (104a,b).

As shown in Table 2, silver trifluoromethanesul-
fonate was used as a promoter, the yield is 60% after
chromatographic purification. When silver carbonate
and iodine were used as promoters, ,-anomer was
obtained in the ratio of 11.5:1. Mercury salts were not
so good promoter, because the yield and stereo-
specificity of the product are low together with a lot
of by-product (19).51)

When S-glycosyl donor (73) was used instead of
the chloride (66), and O-anomer rich of 104 was
obtained in 64–70% yields.34)

Saponification of these acetates (104) with 2M
sodium hydroxide afforded the ,- and O-anomers of
N-acetyl-2-(5-cholesten-3O-yloxy)-D-neuraminic acid
in fair yields, their sodium salts (105a,b) were
prepared with an equimolar amount of sodium
hydroxide.49)

Koenigs–Knorr-like reaction of hepta-O-acetyl-
D-lactosyl halides (106, 107) and cholesterol gave ,-
and O-anomers of 2,3,4,6-tetra-O-acetyl-O-D-galacto-
pyranosyl(1!4)-3,6-di-O-acetyl-1-(5-cholesten-3O-
yloxy)-O-D-glucopyranose (108a,b) and 2,3,4,6-
tetra-O-acetyl-O-D-galactopyranosyl(1!4)-2,3,6-tri-
O-acetyl-1-(5-cholesten-3O-yloxy)-O-D-glucopyranose
(109).

This compound (109) was successively, 1)
deacetylated, 2) the hydroxyl groups of 4- and 6-
positions of galactose moiety were protected, 3)
acetylated, and then 4) debenzylidenation to yield
2,3-di-O-acetyl-O-D-galactopyranosyl(1!4)-2,3,6-tri-

Fig. 27. Synthesis of mucin analogs.
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O-acetyl-1-(5-cholesten-3O-yloxy)-O-D-glucopyranose
(110) in 56% yield. Then the compound 110 and the
chloride (66) were subjected to Koenigs–Knorr-like
reaction, when silver trifluoromethanesulfonate was
used as promotor, ,- and O-anomers of 6-O-[methyl
(5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glyc-
ero-D-galacto-nonulopyransyl)-onate]-(2!6)-di-O-ace-

tyl-O-D-galactopyranosyl-(1!4)-2,3,6-tri-O-acetyl-1-
(5-cholesten-3O-yloxy)-O-D-glucopyranose (111a,b)
were obtained.52)

3-2-h. Partially acetylated of 4-methylcoumarin
derivatives. In Chapter 3, already summarized on
the synthesis of partially O-acetylated Neu5Ac.
Synthesis of various partially acetylated 4-methyl-
coummarin-7-yl 5-acetamido-3,5-dideoxy-,-D-glyc-
ero-D-galacto-2-nonulopyranosidonic acids is describ-
ed as new fluorogenic substrate for neuraminidase.53)

Benzyl esterification of 4-methylcoumarin-7-
yl 5-acetamido-3,5-dideoxy-,-D-glycero-D-galacto-2-
nonulopyranosidonic acid was carried out with
benzyl bromide to yield benzyl (4-methylcoumarin-
7-yl 5-acetamido-3,5-dideoxy-,-D-glycero-D-galacto-
2-nonulopyranosid)onate (112) in 90% yield. Further
treatment of 112 with trimethyl orthoacetate to give
9-O-acetylated (113), followed by hydrogenolysis to
obtain 4-methyl-coumarin-7-yl 5-acetamido-9-O-ace-
tyl-3,5-dideoxy-,-D-glycero-D-galacto-2-nonulopyra-
nosidonic acid (114).

Fig. 28. Synthesis of Neu5Ac(2!6)lactose and 9-O-acyl derivatives.

Table 2.

Glycosyl
donor

Promoter Solvent
Yield
(%)

Ratio of
products

,-104:O-104

By-
product
19 (%)

a Ag2CO3/I2 benzene 22 11.5:1 21

a AgOSO2CF3 CH2Cl2 60 1:1 10

b TMSOSO2CF3 CH2Cl2 5 0:1 42

c
AgOSO2CF3/

SnCl2
benzene 42 1:1.3 33

d BF3.Et2O CH2Cl2 56 0:1 0
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Reaction of 112 with 2,2-dimethoxypropane
gave benzyl (4-methylcoumarin-7-yl 5-acetamido-
8,9-O-isopropylidene-3,5-dideoxy-,-D-glycero-D-galac-
to-2-nonulopyranosid)onate (115). Acetylation at 4-
hydroxyl group with acetic anhydride at 20 °C yielded
116, further removal of the isopropylidene and benzyl
groups afforded 4-methylcoumarin-7-yl 5-acetamido-
3,5-dideoxy-,-D-glycero-D-galacto-2-nonulopyran-osi-
donic acid (117).

After protection of the 4-hydroxyl group with
tert-butyldimethylchlorosilane, treatment with acetic
anhydride gave benzyl (4-methylcoumarin-7-yl
5-acetamido-7-O-acetyl-4-tert-butyldimethylsilyl-8,9-
O-isopropylidene-3,5-dideoxy-,-D-glycero-D-galacto-
2-nonulopyranosid)onate (118). Removal of the
protecting groups of 118 gave benzyl (4-methylcou-
marin-7-yl 5-acetamido-7-O-acetyl-3,5-dideoxy-,-D-
glycero-D-galacto-2-nonulopyranosid)onate (119)
with small amount of by-product (120). Removal
of the benzyl group by catalytic hydrogenation gave
4-methylcoumarin-7-yl 5-acetamido-7-O-acetyl-3,5-

dideoxy-,-D-glycero-D-galacto-2-nonulopyranosidonic
acid (121).

Di-O-acetyl derivative was synthesized from
benzyl (4-methylcoumarin-7-yl 5-acetamido-4,9-di-
O-tert-butyldimethylsilyl-3,5-dideoxy-,-D-glycero-D-
galacto-2-nonulopyranosid)onate (122).52) Acetyla-
tion with acetic anhydride gave benzyl (4-methyl-
coumarin-7-yl 5-acetamido-7,8-di-O-acetyl-4,9-bis-
O-tert-butyldimethylsilyl-3,5-di-deoxy-,-D-glycero-D-
galacto-2-nonulopyranosid)onate (123) in 78% of
yield. Further removal of the O-tert-butyldimethyl-
silyl groups with acetic acid, and then hydrogenation
gave 4-methylcoumarin-7-yl 5-acetamido-7,8-di-
O-acetyl-3,5-dideoxy-,-D-glycero-D-galacto-2-nonulo-
pyranosidonic acid (124).54)

3-2-i. Glycosylation of mitomycin. Mitomycins
are known as excellent antitumor antibiotics, and are
look forward having enhanced antitumor activity
with decreased toxicity than natural mitomycins. A
part of this program on the synthesis of 7-O-glycosyl-
9a-methoxymitosanes, 7-O-(2′,3′,4′,6′-tetra-O-acetyl-

Fig. 30. Synthesis of GM3 analog.

Fig. 29. Synthesis of sialylcholesterol.
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O-D-glucopyranosyl)-9a-methoxymitosane (126a),
7-O-(2′-acetamido-3′,4′,6′-tri-O-acetyl-2′-deoxy-O-D-
glucopyranosyl)-9a-methoxymitosane (126b), 7-O-
(2′-acetamido-3′,4′,6′-tri-O-acetyl-2′-deoxy-O-D-galac-
topyranosyl)-9a-methoxymitosane (126c), and 7-O-
(hepta-O-acetyl-O-D-lactosyl)-9a-methoxymitosane
(126d) were prepared.55)

Treatment of mitomycin A (125) and 4-amino-
phenyl 2,3,4,6-tetra-O-acetyl-O-D-glucopyranoside
gave 7-N-{4-O-(2,3,4,6-tetra-O-acetyl-O-D-glucopyr-
anosyl)phenyl}-9a-methoxymitosane (127) in 69%
of yield. Deacetylation was performed with sodium
methoxide in methanol.

Intermediate, 4-aminophenyl 5-acetamido-
4,7,8,9-tetra-O-acetyl-3,5-dideoxy-,-D-glycero-D-gal-
acto-2-nonulopyranosidoic acid (128) was prepared
starting from Neu4,5,7,8,9Ac51Bn via 2-chloride.
Glycosylation of the chloride with 4-nitrophenol
afforded benzyl (4-nitrophenyl 5-acetamido-4,7,8,9-
tetra-O-acetyl-3,5-dideoxy-,-D-glycero-D-galacto-2-
nonulopyranosid)onate, and the nitro group and
the benzyl group were hydrogenated to yield the
intermediate (128).

Reaction of mitomycin A (125) with 128
afforded 7-N-{4-O-(sodium 5-acetamido-4,7,8,9-
tetra-O-acetyl-3,5-dideoxy-,-D-glycero-D-galacto-2-

Fig. 31. Synthesis of partially acetylated 4-methylcoumarin derivatives.
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Fig. 32. Glycosylation of mitomycins.

Perspective view of 130a,b and 131a,b

130a 130b 131a 131b

Fig. 33. Fischer’s methyl glycosylation of KDN.
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nonulopyranosylonate)-phenyl}-9a-methoxymitosane
(129) after treatment with NaHCO3.56)

4. Preparation of KDN derivatives

4-1. Glycosylation of KDN.
4-1-a. Fischer’s methyl glycosylation of KDN.

KDN is different at the 5-hydroxyl function instead
of amino group of Neu5Ac. Methyl ester (15) of KDN
was treated with methanol under the presence
of Dowex-50(HD), followed by acetylation with
acetic anhydride to give four compounds; methyl
2,4,5,7,8,9-hexa-O-acetyl-3-deoxy-D-glycero-,- and
-O-D-galacto-2-nonulo-pyranosonates (130a,b) and
-furanosonates (131a,b) as shown in Fig. 33.

Ratio of the products depends upon the glyco-
sylation conditions, as shown in Table 3. When the
glycosylation was run at 20 °C, furanosides were

mainly obtained. On the other hand, the reaction
proceeded at 70 °C 15 hr, O-pyranoside mainly ob-
tained.28) These results indicated that furanoside
formed by a kinetic control and pyranoside formed by
a thermodynamic control.

Table 3.

Reaction
temperature

Time
(hr)

Yield (%)

130a 130b 131a 131b

20 °C 240 0 5 32 48

70 °C

1 1 16 21 39

3 2 27 15 33

5 5 67 2 4

15 4 74 0 0

Perspective view of 132a and 132b 

132a 132b

Fig. 34. Acetylation of KDN.
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Structures of these compounds were confirmed
by X-ray analysis.29)

These methyl glycosides (130ab, 131ab) were
deacetylated with potassium carbonate in methanol
to give methyl (methyl 3-deoxy-D-glycero-,- and -O-
D-galacto-2-nonulopyranosid)onates, respectively.29)

4-1-b. Acylation of KDN. Methyl ester (15)
of KDN was treated with acetic anhydride to
afford methyl 2,4,5,7,8,9-hexa-O-acetyl-3-deoxy-D-
glycero-,- and -O-D-galacto-2-nonulopyranosonates
(132a,b). On the other hand, acetylation of KDN
(3) directly, gave 2,4,5,8,9-penta-O-acetyl-3-deoxy-
D-glycero-O-D-galacto-2-nonulopyranosono-1,7-lactone
(133) accompanied by small amount of 132a,b.

Structures of 132a and 132b were confirmed by
X-ray analysis.29) Structure of 1,7-lactone (133) was
elucidated by NMR spectra comparison with the
corresponding Neu5Ac derivative (49).

4-1-c. Glycosylation of KDN. A solution of KDN
(3) in dry methanol was stirred with Dowex-50(HD),
there was obtained methyl glycoside (134). Further
treatment with alkaline and benzyl bromide, yielded
benzyl (methyl 3-deoxy-D-glycero-O-D-galacto-2-non-
ulopyranosid)onate (135). On the other hand,
glycosyl donor, benzyl (4,5,7,8,9-penta-O-acetyl-3-
deoxy-D-glycero-O-D-galacto-2-nonulopyranosyl bro-
mid)onate (137) was prepared from 136 with
titanium tetrabromide (path a). The chloridonate

(138) was prepared from 136 with HCl gas in acetic
acid solution (path b).57)–59) Further treatment of
the bromide (137) with methanol, and then sodium
hydroxide gave benzyl (methyl 3-deoxy-D-glycero-,-
D-galacto-2-nonulopyranosid)onate (139).57)

When cholesterol as a glycosyl acceptor was
reacted with the bromide (137), benzyl 4,5,7,8,9-
penta-O-acetyl-2-(5-cholesten-3O-yloxy)-3-deoxy-D-
glycero-,- and -O-D-galacto-2-nonulopyranosonates
(140) accompanied with large amount of 2,3-dehydro
derivative (benzyl 4,5,7,8,9-penta-O-acetyl-2,6-anhy-
dro-2,3-dideoxy-D-glycero-D-galacto-non-2-enonate)
were obtained.57)

Condensation of the chloride (138) with sodium
salts of phenol, p-nitrophenol, and 4-methylumbelli-
ferone gave the corresponding ,-glycosides, benzyl
(substituted 4,5,7,8,9-penta-O-acetyl-2,6-anhydro-
3-deoxy-D-glycero-,-D-galacto-2-nonulopyranosid)-
onate. These compounds were deprotected with

Table 4.

Substituent
(R)

Yields (%)

phenyl p-nitirophenyl 4-methylumbelliferonyl

1. RONa 31 77 66

2. 0.1M NaOH 81 87 80

Fig. 35. Glycosylation of KDN.
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sodium hydroxide to give sodium (phenyl 3-
deoxy-D-glycero-,-D-galacto-2-nonulopyranosid)onate
(141a), sodium (p-nitrophenyl 3-deoxy-D-glycero-,-
D-galacto-2-nonulopyranosid)onate (141b), and so-
dium (4-methylumbelliferonyl 3-deoxy-D-glycero-,-D-
galacto-2-nonulopyranosid)onate (141c) in good
yields as shown in Fig. 35 and Table 4.58)–61)

4-1-d. N-Glycosylation of KDN. Glycosylation of
benzyl and methyl 2,4,5,7,8,9-hexa-O-acetyl-3-deoxy-
D-glycero-D-galacto-2-nonulopyranosonates (136)
with trimethylsilyl derivatives of pyrimidine, 5-
fluoropyrimidine and 5-methylpyrimidine under
Vorbrüggen reaction conditions gave anomeric mix-
uture of benzyl and methyl 2,3-dideoxy-2-(2,4-dioxo-
1,2,3,4-tetrahydro-pyrimidin-1-yl)-D-glycero-D-galac-
to-2-nonulopyranosonates (142) in poor yields.

On the other hand, methyl 4,5,7,8,9-penta-
O-acetyl-2-chloro-2,3-dideoxy-D-glycero-O-D-galacto-
2-nonulopyranosonate (138; R F Me) and sodium
hydride was used, only the ,-isomers (143) were
formed in rather good yield. Structure of 143
(R FMe, R′ F H) was confirmed by X-ray diffraction
analysis.60)

The 2-chloro derivative (138; R F Me) was
reacted with azidotrimethylsilane to yield methyl
4,5,7,8,9-penta-O-acetyl-2-azido-2,3-dideoxy-D-glyc-
ero-,- and -O-D-galacto-2-nonulopyranosonates
(144; R F Me). Treatment of 144 with 0.01M
sodium hydroxide gave methyl 2-azido-2,3-di-
deoxy-D-glycero-,- and -O-D-galacto-2-nonulopyra-
nosonates (145; R F Me) as shown in Fig. 36.

4-1-e. Photocycloaddition of 2,3-dimethyl-2-butene.
Photocycloaddition reaction of 2,3-dimethyl-2-butene
with 143 gave methyl 4,5,7,8,9-penta-O-acetyl-2,3-
dideoxy-2-[(1R,6S)- (146) and (1S,6R)-7,7,8,8-tetra-
methyl-cis-2,4-diazabicyclo[4.2.0]octane-3,5-dioxo-2-yl]-
D-glycero-,-D-galacto-2-nonulopyranosonate (147).62)

Photocycloaddition of 2,3-dimethyl-2-butene to
2′-deoxyribonucleoside,63) cytosine and 2′-deoxycyti-
dines,64) deoxyuridines,65) benzoylated 2′-deoxyribo-
nucleoside,66) and kinetics and mechanism of photo-
cycloaddition of deoxyuridines to 2,3-dimethyl-2-
butene were reported.67)

4-1-f. Glycosylation of KDN with S-glycosyl donor.
Reaction of methyl 4,5,7,8,9-penta-O-acetyl-3-deoxy-
D-glycero-D-galacto-2-nonulo-pyranosonates (148)
prepared from the chloride (138) with BDTC (30)
afforded methyl (1-phenyl-1H-tetrazol-5-yl 4,5,7,8,9-
penta-O-acetyl-3-deoxy-2-thio-D-glycero-O-D-galacto-
2-nonulopyranosid)onate (149) and methyl (1-phen-
yl-5-thioxo-1H,4H-tetrazol-4-yl 4,5,7,8,9-penta-O-
acetyl-2,3-dideoxy-D-glycero-,- and -O-D-galacto-2-

nonulopyranosid)onate (150). Structures of these
compounds were confirmed by means of UV, CD and
NMR spectra, and X-ray analysis of methyl (1-
phenyl-1H-tetrazol-5-yl 3-deoxy-2-thio-D-glycero-O-
D-galacto-2-nonulopyranosid)onate (154).

These glycosides (149, 150) were applied to O-
glycosylation with 2-propanol to give methyl (iso-
propyl 4,5,7,8,9-penta-O-acetyl-3-deoxy-D-glycero-
,- and -O-D-galacto-2-nonulopyranosid)onate (151).
Reaction of S-glycoside (149) with 2-trimethylsilyl-
oxypropene gave methyl [4,5,7,8,9-penta-O-acetyl-2-
C-(2-oxopropyl)-2,3-dideoxy-D-glycero-,-D-galacto-2-
nonulopyranos]onate (152).

Similar reaction with 1-phenyl-1-(trimethylsilyl-
oxy)ethylene gave methyl [4,5,7,8,9-penta-O-acetyl-
2-C-(2-oxo-2-phenylethyl)-2,3-dideoxy-D-glycero-,-D-
galacto-2-nonulopyranos]onate (153).68)

5. Confirmation of stereochemistry

Structure and stereochemistry of sialic acids and
their derivatives were confirmed by means of NMR
and CD spectra. Furthermore, hydrolysis method
was developed.

5-1. NMR spectra. In the NMR spectra, the
chemical shifts at 3-Heq double-doublet resonance of
Neu5Ac and its derivatives indicated 2.6–2.8 ppm for
,-anomers. For O-anomers the range is 2.1–2.5 ppm.
The coupling constant J7,8 value is 7–9Hz for the ,-
anomers, and 2–3Hz for the O-anomers.34),41)

As summarized in Table 5, the values of chemi-
cal shifts of N-nucleoside at 3-Heq (/: , 3.05 and
2.93 ppm; O 3.09 and 2.89 ppm) and J7,8 values of
KDN derivatives (, 8.7Hz; O 9.0Hz) are quite
different from the usual data. This problem could
be explained by the anisotropic effect of the aromatic
moiety at the 2′-position. The stereochemistry of
sialic acids derivatives at the anomeric position could
not be assessed from the NMR data.

5-2. CD spectra. CD spectra of sialic acids
derivatives are valuable for the stereochemical
confirmation. The peak around 220–230 nm was
assigned to the n–:* Cotton effect of the carboxyl
group. The negative Cotton effect was assigned to the
,-configuration, and the positive Cotton effect was
assigned to the O-configuration. As shown in Fig. 39,
negative Cotton effect around 220–230 nm, support-
ing the ,-configuration. On the other hand, the O-
anomer shows a positive Cotton effect.12),13)

As shown in Fig. 39, O-methyl neuraminate
shows positive Cotton effect around 217 nm, and
the negative one for the ,-anomer at around 223 nm.
Neu5Ac crystals show O-form both in water and KBr.
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Fig. 37. Photocycloaddition of 2,3-dimethyl-2-butene.

Perspective view of 143 (R=Me. R’=H) 

Fig. 36. N-Glycosylation of KDN.
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This conclusion was supported in KDN derivatives as
shown in Fig. 40.29),51),52)

As shown in Figs. 39–41, the peak around 220–
230 nm in several derivatives of Neu5Ac and KDN
was assigned to the n–:* Cotton effect of the
carboxyl group and the positive Cotton effect is O-
and negative one is ,-configuration. Although this
empirical rule does not apply to sialosyl-cytidine and
-uracil derivatives as shown in Fig. 41.48),49),57) Then,
hydrolysis method was exmined.

5-3. Hydrolysis method. Hydrolysis of ,- and
O-methyl neuraminate was performed in water at
80 °C, ,-anomer was hydrolyzed completely in 1 hr,
while O-anomer was stable even after 5 hr as shown
in Fig. 42(a). Further examination was performed on
Neu5Ac2Lac (Fig. 42(b)), ,- and O-anomers were
stable in 0.1M sulfuric acid at 20 °C, while, at 80 °C,

the ,-anomer was hydrolyzed completely in 1 hr in
water.50)

This conclusion was supported in disaccharide
nucleoside, N-glycoside,49) and KDN glycosides57) as
shown Figs. 43, 44. These results indicate that the
measurement of the rate of hydrolysis may be useful
for the confirmation of stereochemistry in sialic acids
chemistry.7) This is supported by Thiem et al.69)

6. Biological activities of glycolipoid

6-1. Disaccharide nucleoside analogs. O-
[Methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5,-di-
deoxy-D-glycero-,-D-galacto-nonulopyranosyl)onate]-
(2!5′)-5-fluoro-2′,3′-O-isopropylideneuridine (75b)
and inosine derivative (80) are capable of enhancing
the induction of suppressor T cells by concanavalin
A, and can also induce suppressor T cells by

Crystal structure of 154

Fig. 38. Glycosylation of KDN with BDTC.
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themselves. They reduced incorporation of sialic acid
into glycoconjugates on the murine lymphocyte
surface.70),71)

Metastatic processes on cancer are very compli-
cated, because they involve various factors and
important problems. Sialyltransferase inhibitor, 5-

fluorouridine derivative was effective in the exper-
imental lung metastasis of colon adenocarcinoma of
NL-17 (high metastatic potential) or NL-44 (low
metastatic potential) cells.72),73)

O-Anomer (76b) of the 5-fluorouridine deriva-
tive, and a mixture of ,- and O-anomer also inhibited

Fig. 39. CD spectra of sialic acids Neu5Ac and its ,- and O-
methyl glycosides.

Table 5.

Compound Ref.
H-3eq

(/; ppm)
Compound Ref.

H-3eq
(/; ppm)

8 2.69 29 2.55

8 2.30 29 2.26

49 3.05 61 2.93

49 3.09 61 2.89

Fig. 40. CD spectra of sialic acids. Cholesterol derivatives of Neu5Ac and KDN.
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the metastatic ability of NL cells.72) On further
experiment of compounds 75 and 76, they inhibited
the metastasis to liver.73)

6-2. Sialosylcholesterol. Sialosylcholesterol
(105a,b) showed potent activity for the propaga-
tion of neurites (neuro 2a) and induced the
morphological conversion of normal rat glioblasts

from a flat epithelioid morphology to an astro-
cytic process-bearing morphology by glia matura-
tion factor (GMF).74)–76) The activity of ,-
sialosylcholesterol (105a) is 420 times as high
as that of GM1 and 270 times that of GQ1b, and
shows a strong activity for the propagation of
neurites.74)–76)

Fig. 41. CD spectra of sialic acids. Uridine and uracil derivatives of Neu5Ac and KDN.

Fig. 42. (a, b) Hydrolysis method of Neu5Ac2Me (a) and Neu5Ac2Lac (b).
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O-KDN-cholesterol has a similar activity for the
propagation of the neurite.74)–76) As shown in Table 6,
the differentiation-inducing activity of ,-Neu5Ac-
cholesterol to HL-50 cells is greater than that of sialo-
glyceride, O-anomer, and KDN-cholesterol.77),78)

Sialosylcholesterol (105a,b) and GM1 are in-
corporated to mouse Neuro 2a in 24 hr. Cell
fractionation experiments of 14C-105a,b showed
940% of the incorporated 14C-sialosylcholesterol
was localized in the nucleus, 25% in the plasma

Fig. 43. (a, b) Hydrolysis method of Neu5Ac derivatives.

Fig. 44. Hydrolysis method of KDN derivatives.
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membrane fractions, and 11–14% in the granule
fraction (Table 7).79),80)

In conclusion, sialyl derivatives of cholesterol
have strong biological activities. Addition of ,-
sialylcholesterol stimulated mouse brain and release
acetylcholine from synaptosomes. The O-anomer also
increased the neurotransmitter release, but the effect
was weak.81),82)

6-3. Sialidase inhibitors. Partially O-acety-
lated (4, 7, and 9-position) 4-methylumbelliferyl-,-N-

acetylneuraminic acids (cf. 3-2-h) were tested as
substrates of sialidases of Vibrio cholerae and of
Clostridium perfringens. The relative substrate
specificity of the Vibrio cholerae sialidase is Neu5-
Ac-MU > Neu5,7Ac2-MU : Neu5,9Ac2-MU.83),84)

Activity of sialidases inhibitor is weak.
Zanamivir (145; N-acetyl-2,3-didehydro-4-de-

oxy-4-guanidinoneuraminic acid: 5- acetamido-2,3-
didehydro-3,4,5-trideoxy-4-guanidino-,-D-glycero-D-
galacto-2-nonulopyranosonic acid: 4-guanidino-
Neu5Ac2en) is a potent neuraminidase inhibitor for
antiviral against influenza viruses.85),86)

Modified antiviral agent inavir (146; laninami-
vir octanoate) is also used as a long-acting and a
single inhalation neuraminidase inhibitor.87)

6-4. Edible bird’s nest. Edible bird’s nest is
the nest made by saliva of Collocalia sp. and used as
the drug for keeping health and for enhancing
immunocompetence since it was used in ancient
China.4) Recently, edible bird’s nest stimulates the
growth factor for epidermal tissue resulting the
repairing of cells.88),89)

Extract of edible bird’s nest strongly inhibits
infection with influenza viruses and inhibits hemag-
glutination of influenza viruses to erythrocytes.
Edible bird’s nest is the safe and valid natural source
for the prevention of influenza viruses.90)

6-5. N-acetyl-D-neuraminic acid. N-Acetyl-
D-neuraminic acid showed mucospissic and mucocili-
ary clearance effects, and is expected as a pollinosis
agent.91),92)

Acknowledgements

This review summarizes of our studies about
sialic acids performed in School of Pharmaceutical
Sciences, Kitasato University. I am grateful to
Professor Yamakawa for his kind guidance through
the research of sialic acids, and for his encouragement
in the preparation of this review.

Fig. 45. Antiviral agent.

Table 6. Neutrogenic effects of sialosylcholesterol neurite exten-
tion neuro 2a cells

Compound Dose (M) Length

control 6.33 ’ 0.58

,-Neu-cholesterol 10!7 12.33 ’ 2.08

10!6 15.00 ’ 1.00

O-Lac-cholesterol 10!7 9.33 ’ 0.58

10!6 9.33 ’ 0.58

10!5 9.33 ’ 2.31

,-KDN-cholesterol 10!7 9.33 ’ 0.58

10!6 #

10!5 #

O-KDN-cholesterol 10!7 10.67 ’ 1.15

10!6 11.67 ’ 1.53

10!5 13.00 ’ 1.53

Table 7. Intracellular distribution of incorporated sialosylcholes-
terol and GM1

Fraction
,-Sialosyl-
cholesterol

O-Sialosyl-
cholesterol

GM1

Plasma membrane 25.1 ’ 1.47 25.4 ’ 1.62 21.7 ’ 1.12

Granule 14.3 ’ 10.78 11.1 ’ 0.66 25.4 ’ 1.31

Nucleus 42.6 ’ 2.49 41.2 ’ 2.23 25.5 ’ 1.31
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